Title of article :
A Kolmogorov–Smirnov statistic based segmentation approach to learning from imbalanced datasets: With application in property refinance prediction
Author/Authors :
Gong، نويسنده , , Rongsheng and Huang، نويسنده , , Samuel H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Classification is an important task in data mining. Class imbalance has been reported to hinder the performance of standard classification models. However, our study shows that class imbalance may not be the only cause to blame for poor performance. Rather, the underlying complexity of the problem may play a more fundamental role. In this paper, a decision tree method based on Kolmogorov–Smirnov statistic (K–S tree), is proposed to segment the training data so that a complex problem can be divided into several easier sub-problems where class imbalance becomes less challenging. K–S tree is also used to perform feature selection, which not only selects relevant variables but also removes redundant ones. After segmentation, a two-way re-sampling method is used at the segment level to empirically determine the optimal sampling percentage and the rebalanced data is used to fit logistic regression models, also at the segment level. The effectiveness of the proposed method is demonstrated through its application on property refinance prediction.
Keywords :
Imbalanced data , Kolmogorov–Smirnov statistic , Property refinance prediction , segmentation , Decision tree
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications