Title of article :
Forecasting seasonal time series with computational intelligence: On recent methods and the potential of their combinations
Author/Authors :
?t?pni?ka، نويسنده , , Martin and Cortez، نويسنده , , Paulo and Donate، نويسنده , , Juan Peralta and ?t?pni?kov?، نويسنده , , Lenka، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Accurate time series forecasting is a key issue to support individual and organizational decision making. In this paper, we introduce novel methods for multi-step seasonal time series forecasting. All the presented methods stem from computational intelligence techniques: evolutionary artificial neural networks, support vector machines and genuine linguistic fuzzy rules. Performance of the suggested methods is experimentally justified on seasonal time series from distinct domains on three forecasting horizons. The most important contribution is the introduction of a new hybrid combination using linguistic fuzzy rules and the other computational intelligence methods. This hybrid combination presents competitive forecasts, when compared with the popular ARIMA method. Moreover, such hybrid model is more easy to interpret by decision-makers when modeling trended series.
Keywords :
Support vector machine , Fuzzy rules , genetic algorithm , Time series , Computational intelligence , NEURAL NETWORKS
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications