Title of article :
Decision trees and genetic algorithms for condition monitoring forecasting of aircraft air conditioning
Author/Authors :
Gerdes، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
6
From page :
5021
To page :
5026
Abstract :
Unscheduled maintenance of aircraft can cause significant costs. The machine needs to be repaired before it can operate again. Thus it is desirable to have concepts and methods to prevent unscheduled maintenance. This paper proposes a method for forecasting the condition of aircraft air conditioning system based on observed past data. Forecasting is done in a point by point way, by iterating the algorithm. The proposed method uses decision trees to find and learn patterns in past data and use these patterns to select the best forecasting method to forecast future data points. Forecasting a data point is based on selecting the best applicable approximation method. The selection is done by calculating different features/attributes of the time series and then evaluating the decision tree. A genetic algorithm is used to find the best feature set for the given problem to increase the forecasting performance. The experiments show a good forecasting ability even when the function is disturbed by noise.
Keywords :
Time series , Expert system , Forecasting , Machine Learning , Maintenance , Decision tree , genetic algorithm
Journal title :
Expert Systems with Applications
Serial Year :
2013
Journal title :
Expert Systems with Applications
Record number :
2353748
Link To Document :
بازگشت