Title of article :
Modular edge colorings of Mycielskian graphs
Author/Authors :
-، - نويسنده Annamalai University Paramaguru, N. , -، - نويسنده Annamalai University Sampathkumar, R.
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2015
Pages :
9
From page :
53
To page :
61
Abstract :
-
Abstract :
Let $G$ be a connected graph of order $3$ or more and $c:E(G)rightarrowmathbb{Z}_k$‎ ‎($kge 2$) a $k$-edge coloring of $G$ where adjacent edges may be colored the same‎. ‎The color sum $s(v)$ of a vertex $v$ of $G$ is the sum in $mathbb{Z}_k$ of the colors of the edges incident with $v.$ The $k$-edge coloring $c$ is a modular $k$-edge coloring of $G$ if $s(u)ne s(v)$ in $mathbb{Z}_k$ for all pairs $u,$ $v$ of adjacent vertices of $G.$ The modular chromatic index $chiʹ_m(G)$ of $G$ is the minimum $k$ for which $G$ has a modular $k$-edge coloring‎. ‎The Mycielskian of $G,=,(V,E)$ is the graph $mathscr{M}(G)$ with vertex set $Vcup Vʹcup{u},$ where $Vʹ={vʹ:vin V},$ and edge set $Ecup{xyʹ:xyin E}cup{vʹu:vʹin Vʹ}.$ It is shown that $chiʹ_m(mathscr{M}(G)),=,chi(mathscr{M}(G))$ for some bipartite graphs‎, ‎cycles and complete graphs‎.
Journal title :
Transactions on Combinatorics
Serial Year :
2015
Journal title :
Transactions on Combinatorics
Record number :
2353757
Link To Document :
بازگشت