Title of article :
Support vector machines for disruption prediction and novelty detection at JET
Author/Authors :
Cannas، نويسنده , , B. and Delogu، نويسنده , , R.S. and Fanni، نويسنده , , A. and Sonato، نويسنده , , P. and Zedda، نويسنده , , M.K.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
In the last years there has been a growing interest on black box approaches to disruption prediction. The drawback of these approaches is that the system could deteriorate its performance once it does not get updated. This could be the case of a disruption predictor for JET, where new plasma configurations might present features completely different from those observed in the experiments used during the training phase. This ‘novelty’ can be incorrectly classified by the system. A novelty detection method, which determines the novelty of the input of the prediction system, can be used to assess the system reliability.
aper presents a support vector machines disruption predictor for JET, wherein multiple plasma diagnostic signals are combined to provide a composite impending disruption warning indicator. In a support vector machine the analysis of the decision function value gives useful information about the novelty of an input and, on the reliability of the predictor output, during on-line applications. Results show the suitability of support vector machines both for prediction and novelty detection tasks at JET.
Keywords :
novelty detection , Support Vector Machines , Disruption prediction , NEURAL NETWORKS
Journal title :
Fusion Engineering and Design
Journal title :
Fusion Engineering and Design