Title of article :
A DDDAMS-based planning and control framework for surveillance and crowd control via UAVs and UGVs
Author/Authors :
Khaleghi، نويسنده , , Amirreza M. and Xu، نويسنده , , Dong and Wang، نويسنده , , Zhenrui and Li، نويسنده , , Mingyang and Lobos، نويسنده , , Alfonso and Liu، نويسنده , , Jian and Son، نويسنده , , Young-Jun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
16
From page :
7168
To page :
7183
Abstract :
A dynamic data driven adaptive multi-scale simulation (DDDAMS) based planning and control framework is proposed for effective and efficient surveillance and crowd control via UAVs and UGVs. The framework is mainly composed of integrated planner, integrated controller, and decision module for DDDAMS. The integrated planner, which is designed in an agent-based simulation (ABS) environment, devises best control strategies for each function of (1) crowd detection (vision algorithm), (2) crowd tracking (filtering), and (3) UAV/UGV motion planning (graph search algorithm). The integrated controller then controls real UAVs/UGVs for surveillance tasks via (1) sensory data collection and processing, (2) control command generation based on strategies provided by the decision planner for crowd detection, tracking, and motion planning, and (3) control command transmission via radio to the real system. The decision module for DDDAMS enhances computational efficiency of the proposed framework via dynamic switching of fidelity of simulation and information gathering based on the proposed fidelity selection and assignment algorithms. In the experiment, the proposed framework (involving fast-running simulation as well as real-time simulation) is illustrated and demonstrated for a real system represented by hardware-in-the-loop (HIL) real-time simulation integrating real UAVs, simulated UGVs and crowd, and simulated environment (e.g. terrain). Finally, the preliminary results successfully demonstrate the benefit of the proposed dynamic fidelity switching concerning the crowd coverage percentage and computational resource usage (i.e. CPU usage) under cases with two different simulation fidelities.
Keywords :
UAV , UGV , FIDELITY , Agent-Based Simulation , Surveillance , DDDAMS
Journal title :
Expert Systems with Applications
Serial Year :
2013
Journal title :
Expert Systems with Applications
Record number :
2354085
Link To Document :
بازگشت