Title of article :
Applying Ant Colony Optimization to configuring stacking ensembles for data mining
Author/Authors :
Chen، نويسنده , , YiJun and Wong، نويسنده , , Man-Leung and Li، نويسنده , , Haibing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
15
From page :
2688
To page :
2702
Abstract :
An ensemble is a collective decision-making system which applies a strategy to combine the predictions of learned classifiers to generate its prediction of new instances. Early research has proved that ensemble classifiers in most cases can be more accurate than any single component classifier both empirically and theoretically. Though many ensemble approaches are proposed, it is still not an easy task to find a suitable ensemble configuration for a specific dataset. In some early works, the ensemble is selected manually according to the experience of the specialists. Metaheuristic methods can be alternative solutions to find configurations. Ant Colony Optimization (ACO) is one popular approach among metaheuristics. In this work, we propose a new ensemble construction method which applies ACO to the stacking ensemble construction process to generate domain-specific configurations. A number of experiments are performed to compare the proposed approach with some well-known ensemble methods on 18 benchmark data mining datasets. The approach is also applied to learning ensembles for a real-world cost-sensitive data mining problem. The experiment results show that the new approach can generate better stacking ensembles.
Keywords :
Ensemble , stacking , Metaheuristics , Direct marketing , DATA MINING , ACO
Journal title :
Expert Systems with Applications
Serial Year :
2014
Journal title :
Expert Systems with Applications
Record number :
2354568
Link To Document :
بازگشت