Title of article :
Predicting the helpfulness of online reviews using multilayer perceptron neural networks
Author/Authors :
Lee، نويسنده , , Sangjae and Choeh، نويسنده , , Joon-Yeon and Shan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
With the great development of e-commerce, users can create and publish a wealth of product information through electronic communities. It is difficult, however, for manufacturers to discover the best reviews and to determine the true underlying quality of a product due to the sheer volume of reviews available for a single product. The goal of this paper is to develop models for predicting the helpfulness of reviews, providing a tool that finds the most helpful reviews of a given product. This study intends to propose HPNN (a helpfulness prediction model using a neural network), which uses a back-propagation multilayer perceptron neural network (BPN) model to predict the level of review helpfulness using the determinants of product data, the review characteristics, and the textual characteristics of reviews. The prediction accuracy of HPNN was better than that of a linear regression analysis in terms of the mean-squared error. HPNN can suggest better determinants which have a greater effect on the degree of helpfulness. The results of this study will identify helpful online reviews and will effectively assist in the design of review sites.
Keywords :
Neural networksHelpfulnessPrediction modelDeterminants of helpfulness
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications