Title of article
Adaptive noise filtering based on artificial hydrocarbon networks: An application to audio signals
Author/Authors
Ponce، نويسنده , , Hiram and Ponce، نويسنده , , Pedro and Molina، نويسنده , , Arturo، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2014
Pages
12
From page
6512
To page
6523
Abstract
Many audio signal applications are corrupted by noise. In particular, adaptive filters are frequently applied to white noise reduction in audio. Recent work provides that there exist some insights on using an artificial intelligence method called artificial hydrocarbon networks (AHNs) for filtering audio signals. Thus, the scope of this paper is to design and implement a novel approach of artificial hydrocarbon networks on adaptive filtering for audio signals. Three experiments were developed. Results demonstrate that AHNs can reduce noise from audio signals. A comparison between the proposed algorithm and a FIR-filter is also provided. The short-time objective intelligibility value (STOI) and the signal-to-noise ratio (SNR) were used for evaluation. At last, the proposed training method for finding the parameters involved in the AHN-filter can also be used in other fields of application.
Keywords
Artificial organic networks , Artificial hydrocarbon networks , audio signal processing
Journal title
Expert Systems with Applications
Serial Year
2014
Journal title
Expert Systems with Applications
Record number
2355110
Link To Document