Title of article :
A weighted inference engine based on interval-valued fuzzy relational theory
Author/Authors :
Lim، نويسنده , , Chee Kau and Chan، نويسنده , , Chee Seng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2015
Pages :
10
From page :
3410
To page :
3419
Abstract :
The study of fuzzy relations forms an important fundamental of fuzzy reasoning. Among all, the research on compositional fuzzy relations by Bandler and Kohout, or the Bandler–Kohout (BK) subproduct gained remarkable success in developing inference engines for numerous applications. Despite of its successfulness, we notice that there are limitations associated in the current implementations of the BK subproduct. In this paper, the BK subproduct, which originally based on the ordinary fuzzy set theory, is extended to the interval-valued fuzzy sets. This is because studies had claimed that ordinary fuzzy set theory has its limitation in addressing uncertainties using the crisp membership functions. Secondly, with the understanding that some features might have higher influence compare to the others, a weight parameter is introduced in the BK subproduct-based inference engines. Finally, a fuzzification method that able to fuzzify the input data and also train the inference engines is also developed. So, the BK subproduct-based inference systems can be built without human intervention, which are cumbersome and time consuming. Experiments on three public datasets and a comparison with state-of-art solutions have shown the efficiency and robustness of the proposed method.
Keywords :
Fuzzy relations , BK subproduct , Interval-valued fuzzy sets , Fuzzy sets and systems , Membership functions , inference engine
Journal title :
Expert Systems with Applications
Serial Year :
2015
Journal title :
Expert Systems with Applications
Record number :
2355791
Link To Document :
بازگشت