Title of article :
Domination number of graph fractional powers
Author/Authors :
IRADMUSA، MOHARRAM N نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2014
Pages :
11
From page :
1479
To page :
1489
Abstract :
For any $k\in \mathbb{N}$‎, ‎the $k$-subdivision of < a > graph $G$ is a simple graph $G^{\frac{1}{k}}$‎, ‎which is constructed by replacing each edge of $G$ with a path of length $k$‎. ‎In [Moharram N‎. ‎Iradmusa‎, ‎{\it On colorings of graph fractional powers}‎, ‎Discrete Math.‎, ‎(310) 2010‎, ‎No‎. ‎10-11‎, ‎1551-1556] the $m$th power‎ ‎of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$‎, ‎denoted by $G^{\frac{m}{n}}$‎. ‎In this regard‎, ‎we investigate domination number and independent domination number of fractional powers of graphs‎.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2014
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2358456
Link To Document :
بازگشت