Title of article :
Approximating fixed points of generalized nonexpansive mappings
Author/Authors :
RAZANI، A. نويسنده , , ‎Salahifard، H. نويسنده Imam Khomeini International‎ ‎University ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2011
Pages :
12
From page :
235
To page :
246
Abstract :
‎Let $C$ be a nonempty closed‎ ‎convex subset of a complete $CAT(0)$ space and $T:C\to C$ be a‎ ‎generalized nonexpansive mapping with $F(T)= \{x\in C:T(x)=x\}\neq‎ ‎\emptyset$‎. ‎Suppose $\{x_n\}$ is generated iteratively by $x_1 \in‎ ‎C$‎, ‎\[‎ ‎x_{n+1} = t_n T[s_n Tx_n \oplus (1‎- ‎s_n)x_n]\oplus (1‎- ‎t_n)x_n‎ , ‎\]‎ ‎for all $ n\geq 1$‎, ‎where $\{t_n\}$ and $\{s_n\}$ are real‎ ‎sequences in $[0‎ ,‎1]$ such that one of the following two conditions is satisfied:\\‎ ‎(i) $t_n \in [a,b]$ and $s_n \in [0,1]$‎, ‎for some $a,b$ with $0 < a\leq b < 1$,\\‎ ‎(ii) $t_n \in [a,1]$ and $s_n \in [a,b]$‎, ‎for some $a,b$ with $0 < a\leq b < 1$.\\‎ ‎Then‎, ‎the sequence $\{x_n\}$‎, ‎$\Delta$-converges to a fixed point‎ ‎of $T$‎. ‎Our results extend the ones in Laokul and Panyanak [{T‎. ‎Laokul and B‎. ‎Panyanak‎, ‎{\em Int‎. ‎J‎. ‎Math‎. ‎Anal.} {\bf 3} (2009)‎ ‎1305--1315.}] and also the ones in Nanjaras et al‎. ‎[{B‎. ‎Nanjaras‎, ‎B‎. ‎Panyanak and W‎. ‎Phuangrattana‎, ‎{\em Nonlinear Anal‎. ‎Hybrid‎ ‎Syst.} {\bf 4} (2010) 25--31.}]‎.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2011
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2359278
Link To Document :
بازگشت