Title of article :
Water contents of the Cenozoic lithospheric mantle beneath the western part of the North China Craton: Peridotite xenolith constraints
Author/Authors :
Xia، نويسنده , , Qun-Ke and Hao، نويسنده , , Yantao and Liu، نويسنده , , Shao-Chen and Gu، نويسنده , , Xiaoyan and Feng، نويسنده , , Min، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Nominally anhydrous phases (clinopyroxene (cpx), orthopyroxene (opx), and olivine (ol)) of peridotite xenoliths hosted by the Cenozoic basalts from Beishan (Hebei province), and Fansi (Shanxi province), Western part of the North China Craton (WNCC) have been investigated by Fourier transform infrared spectrometry (FTIR). The H2O contents (wt.) of cpx, opx and ol are 30–255 ppm, 14–95 ppm and ~ 0 ppm, respectively. Although potential H-loss during xenolith ascent cannot be excluded for olivine, pyroxenes (cpx and opx) largely preserve the H2O content of their mantle source inferred from (1) the homogenous H2O content within single pyroxene grains, and (2) equilibrium H2O partitioning between cpx and opx. Based on mineral modes and assuming a partition coefficient of 10 for H2O between cpx and ol, the recalculated whole-rock H2O contents range from 6 to 42 ppm. In combination with previously reported data for other two localities (Hannuoba and Yangyuan from Hebei province), the H2O contents of cpx, opx and whole-rock of peridotite xenoliths (43 samples) hosted by the WNCC Cenozoic basalts range from 30 to 654 ppm, 14 to 225 ppm, and 6 to 262 ppm respectively. The H2O contents of the Cenozoic lithospheric mantle represented by peridotite xenoliths fall in a similar range for both WNCC and the eastern part of the NCC (Xia et al., 2010, Journal of Geophysical Research). Clearly, the Cenozoic lithospheric mantle of the NCC is dominated by much lower water content compared to the MORB source (50–250 ppm). The low H2O content is not caused by oxidation of the mantle domain, and likely results from mantle reheating, possibly due to an upwelling asthenospheric flow during the late Mesozoic–early Cenozoic lithospheric thinning of the NCC. If so, the present NCC lithospheric mantle mostly represents relict ancient lithospheric mantle. Some newly accreted and cooled asthenospheric mantle may exist in localities close to deep fault.
Keywords :
Beishan , Peridotite xenoliths , Fansi , Western North China Craton , H2O contents
Journal title :
Gondwana Research
Journal title :
Gondwana Research