Title of article :
Biohydrometallurgy techniques of low grade ores: A review on black shale
Author/Authors :
Anjum، نويسنده , , Fozia and Shahid، نويسنده , , Muhammad and Akcil، نويسنده , , Ata، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
The demand for metals is ever increasing with the advancement of the industrialized world. On the other hand, worldwide reserves of high grade ores are close to depletion. However, there exists a large reserve of metals in low and lean grade ores and other secondary sources. Metal recovery from low and lean grade ores using conventional techniques such as pyrometallurgy, etc. requires high energy and capital inputs which often result in the secondary environmental pollution. Thus, there is a need to utilize more efficient technologies to recover metals. Biohydrometallurgy, which exploits microbiological processes to recover metal ions, is regarded as one of the most promising and revolutionary biotechnologies. The products of such processes are dissolved in aqueous solution, thereby rendering them more amenable to containment, treatment and recovery. On top of this, biohydrometallurgy can be conducted under mild conditions, usually without the use of any toxic chemicals. Consequently, the application of biohydrometallurgy in the recovery of metals from lean grade ores and wastes has made it an eco-friendly technology for enhanced metal production. This paper reviews the current status of biohydrometallurgy of low grade ores around the world. Particular attention is focused on the bioleaching of black shale ore and its metallogenic diversity in the world. The review assesses the status of bioprocesssing of metals to evaluate promising developments. Bioleaching of metals is comprehensively reviewed with the emphasis on the contribution of microbial community, especially fungal bioleaching coupled with ultrasound treatment. In this manuscript, the principles of bioleaching, their mechanisms, and commercial applications are presented. The case studies and future technology directions are also reviewed.
Keywords :
Bioleaching , Sonobioleaching , black shale , microorganism , Minerals dissolution
Journal title :
HYDROMETALLURGY
Journal title :
HYDROMETALLURGY