Title of article :
Effects of mass loss for highly-irradiated giant planets
Author/Authors :
Hubbard، نويسنده , , W.B. and Hattori، نويسنده , , M.F. and Burrows، نويسنده , , A. and Hubeny، نويسنده , , I. and Sudarsky، نويسنده , , D.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
7
From page :
358
To page :
364
Abstract :
We present calculations for the evolution and surviving mass of highly-irradiated extrasolar giant planets (EGPs) at orbital semimajor axes ranging from 0.023 to 0.057 AU using a generalized scaled theory for mass loss, together with new surface-condition grids for hot EGPs and a consistent treatment of tidal truncation. Theoretical estimates for the rate of energy-limited hydrogen escape from giant-planet atmospheres differ by two orders of magnitude, when one holds planetary mass, composition, and irradiation constant. Baraffe et al. [Baraffe, I., Selsis, F., Chabrier, G., Barman, T.S., Allard, F., Hauschildt, P.H., Lammer, H., 2004. Astron. Astrophys. 419, L13–L16] predict the highest rate, based on the theory of Lammer et al. [Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J., Weiss, W.W., 2003. Astrophys. J. 598, L121–L124]. Scaling the theory of Watson et al. [Watson, A.J., Donahue, T.M., Walker, J.C.G., 1981. Icarus 48, 150–166] to parameters for a highly-irradiated exoplanet, we find an escape rate ∼ 10 2 lower than Baraffeʹs. With the scaled Watson theory we find modest mass loss, occurring early in the history of a hot EGP. In this theory, mass loss including the effect of Roche-lobe overflow becomes significant primarily for masses below a Saturn mass, for semimajor axes ⩾ 0.023   AU . This contrasts with the Baraffe model, where hot EGPs are claimed to be remnants of much more massive bodies, originally several times Jupiter and still losing substantial mass fractions at present.
Keywords :
extrasolar planets , Jovian planets , Thermal histories
Journal title :
Icarus
Serial Year :
2007
Journal title :
Icarus
Record number :
2374254
Link To Document :
بازگشت