Author/Authors :
Shestopalov، نويسنده , , D.I. and McFadden، نويسنده , , L.A. and Golubeva، نويسنده , , L.F.، نويسنده ,
Abstract :
An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called “optimal” because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1–35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroidsʹ surface. While not measured by microprobe analysis, Fe3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038 Kristina, 4147 Lennon, and 5143 Heracles. Probably there are other spectrally active materials along with pyroxenes on the surfaces of these asteroids.
Keywords :
Asteroids , Asteroidscomposition , Asteroidssurfaces , Spectrophotometry