Title of article :
Good match exploration for infrared face recognition
Author/Authors :
Yang، نويسنده , , Changcai and Zhou، نويسنده , , Huabing and Sun، نويسنده , , Sheng and Liu، نويسنده , , Renfeng and Zhao، نويسنده , , Ji and Ma، نويسنده , , Jiayi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
Establishing good feature correspondence is a critical prerequisite and a challenging task for infrared (IR) face recognition. Recent studies revealed that the scale invariant feature transform (SIFT) descriptor outperforms other local descriptors for feature matching. However, it only uses local appearance information for matching, and hence inevitably leads to a number of false matches. To address this issue, this paper explores global structure information (GSI) among SIFT correspondences, and proposes a new method SIFT-GSI for good match exploration. This is achieved by fitting a smooth mapping function for the underlying correct matches, which involves softassign and deterministic annealing. Quantitative comparisons with state-of-the-art methods on a publicly available IR human face database demonstrate that SIFT-GSI significantly outperforms other methods for feature matching, and hence it is able to improve the reliability of IR face recognition systems.
Keywords :
Spatial mapping function , Infrared (IR) face image , Thin-plate spline (TPS) , Feature matching , Global structure information (GSI)
Journal title :
Infrared Physics & Technology
Journal title :
Infrared Physics & Technology