Author/Authors :
Schaefer، نويسنده , , Laura and Fegley Jr.، نويسنده , , Bruce، نويسنده ,
Abstract :
We used chemical equilibrium calculations to model thermal metamorphism of ordinary chondritic material as a function of temperature, pressure, and trace element abundance and use our results to discuss volatile mobilization during thermal metamorphism of ordinary chondrite parent bodies. We compiled trace element abundances in H-, L-, and LL-chondrites for the elements Ag, As, Au, Bi, Br, Cd, Cs, Cu, Ga, Ge, I, In, Pb, Rb, Sb, Se, Sn, Te, Tl, and Zn, and identified abundance trends as a function of petrographic type within each class. We calculated volatility sequences for the trace elements in ordinary chondritic material, which differ significantly from the solar nebula volatility sequence. Our results are consistent with open-system thermal metamorphism. Abundance patterns of Ag and Zn remain difficult to explain.