Title of article :
Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth’s atmosphere: The STONE 6 experiment
Author/Authors :
Foucher، نويسنده , , Frédéric and Westall، نويسنده , , Frances and Brandstنtter، نويسنده , , Franz and Demets، نويسنده , , René and Parnell، نويسنده , , John and Cockell، نويسنده , , Charles S. and Edwards، نويسنده , , Howell G.M. and Bény، نويسنده , , Jean-Michel and Brack، نويسنده , , André، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
15
From page :
616
To page :
630
Abstract :
If life ever appeared on Mars, could we find traces of primitive life embedded in sedimentary meteorites? To answer this question, a 3.5-byr-old volcanic sediment containing microfossils was embedded in the heat shield of a space capsule in order to test survival of the rock and the microfossils during entry into the Earth’s atmosphere (the STONE 6 experiment). The silicified volcanic sediment from the Kitty’s Gap Chert (Pilbara, Australia) is considered to be an excellent analogue for Noachian-age volcanic sediments. The microfossils in the chert are also analogues for potential martian life. An additional goal was to investigate the survival of living microorganisms (Chroococcidiopsis) protected by a 2-cm thick layer of rock in order to test whether living endolithic organisms could survive atmospheric entry when protected by a rocky coating. logical alteration of the sediment due to shock heating was manifested by the formation of a fusion crust, cracks in the chert due to prograde and retrograde changes of α quartz to β quartz, increase in the size of the fluid inclusions, and dewatering of the hydromuscovite-replaced volcanic protoliths. The carbonaceous microfossils embedded in the chert matrix survived in the rock away from the fusion crust but there was an increase in the maturity index of the kerogen towards the crust. We conclude that this kind of sediment can survive atmospheric entry and, if it contains microfossils, they could also survive. The living microorganisms were, however, completely carbonised by flame leakage to the back of the sample and therefore non-viable. However, using an analytical model to estimate the temperature reached within the sample thickness, we conclude that, even without flame leakage, the living organisms probably need to be protected by at least 5 cm of rock in order to be shielded from the intense heat of entry.
Keywords :
meteorites , astrobiology , Thermal histories , Mineralogy , Mars
Journal title :
Icarus
Serial Year :
2010
Journal title :
Icarus
Record number :
2377528
Link To Document :
بازگشت