Title of article :
Water, heat, bombardment: The evolution and current state of (2) Pallas
Author/Authors :
Schmidt، نويسنده , , Britney Elyce and Castillo-Rogez، نويسنده , , Julie C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
11
From page :
478
To page :
488
Abstract :
Using recent constraints on the shape and density of (2) Pallas, we model the thermal evolution of the body as a function of possible formation scenarios that differ in the time of formation and composition assumed for the protoplanet. We develop possible evolution scenarios for Pallas and compare these to available observations. Our models imply two distinct types of end states: those with a hydrosphere and silicate core, and those where the body is dominated by hydrated silicates. We show that for an initial ice-rock mixture with density 2400 kg/m3, Pallas is likely to differentiate and form a rocky core and icy shell. If Pallas accreted from material with lower initial ice content, our models indicate that Pallas’s interior is dominated by hydrated silicates, possibly with a core of anhydrous silicates. o investigate the possibility that Pallas’s initial density was similar to Ceres’, i.e., that it formed from an ice–rock mixture of density 2100 kg/m3. This implies that the object lost a significant fraction of its hydrosphere as a consequence of thermal oscillations and impacts, a distinct possibility given its density, evidence for impact excavation and current orbital parameters. Its blue spectral slope and observed surface variation may also be evidence for such a process (e.g. Jewitt, D.C. [2002]. Astron. J. 123, 1039–1049; Schmidt, B.E. et al. [2009]. Science 326, 275–279; Yang, B., Jewitt, D. [2010]. Astron. J. 140, 692–698). If Pallas still contains a thin layer of water ice, then that layer corresponds to the bottom of a former icy shell, and as such, could be enriched in non-ice materials such as organics. We evaluate the likeliness of each scenario and show the general magnitude of water loss processes for Pallas. Given a balance of observational and theoretical constraints, we favor a water-rich accretion for Pallas that implies that Pallas has lost a significant fraction of its initial water content through exogenic processes since its internal evolution ceased. We also discuss implications of this work to other hydrated asteroids.
Keywords :
Planetesimals , Asteroids , COMPOSITION , geophysics , meteorites , Asteroids
Journal title :
Icarus
Serial Year :
2012
Journal title :
Icarus
Record number :
2378861
Link To Document :
بازگشت