Title of article :
Estimation of grassland biomass and nitrogen using MERIS data
Author/Authors :
Ullah، نويسنده , , Saleem and Si، نويسنده , , Yali and Schlerf، نويسنده , , Martin and Skidmore، نويسنده , , Andrew K. and Shafique، نويسنده , , Muhammad and Iqbal، نويسنده , , Irfan Akhtar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
This study aimed to investigate the potential of MERIS in estimating the quantity and quality of a grassland using various vegetation indices (NDVI, SAVI, TSAVI, REIP, MTCI and band depth analysis parameters) at a regional scale. Green biomass was best predicted by NBDI (normalised band depth index) and yielded a calibration R2 of 0.73 and a Root Mean Square Error (RMSE) of 136.2 g m−2 (using an independent validation dataset, n = 30) compared to a much higher RMSE obtained from soil adjusted vegetation index SAVI (444.6 g m−2). Nitrogen density was also best predicted by NBDI and yielded a calibration R2 of 0.51 and a RMSE of 4.2 g m−2 compared to a relatively higher RMSE obtained from MERIS terrestrial chlorophyll index MTCI (6.6 g m−2). For the estimation of nitrogen concentration (%), band depth analysis parameters showed poor R2 of 0.21 and the results of MTCI and REIP were statistically non-significant (P > 0.05). It is concluded that band depth analysis parameters consistently showed higher accuracy than vegetation indices, suggesting that band depth analysis parameters could be used to monitor grassland condition over time at regional scale.
Keywords :
Vegetation indices , Quantifying biomass , nitrogen concentration , and nitrogen density , Band depth analysis parameters
Journal title :
International Journal of Applied Earth Observation and Geoinformation
Journal title :
International Journal of Applied Earth Observation and Geoinformation