Title of article :
Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution
Author/Authors :
Wordsworth، نويسنده , , R. and Forget، نويسنده , , F. and Millour، نويسنده , , E. and Head، نويسنده , , J.W. and Madeleine، نويسنده , , J.-B. and Charnay، نويسنده , , B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
19
From page :
1
To page :
19
Abstract :
We discuss 3D global simulations of the early martian climate that we have performed assuming a faint young Sun and denser CO2 atmosphere. We include a self-consistent representation of the water cycle, with atmosphere–surface interactions, atmospheric transport, and the radiative effects of CO2 and H2O gas and clouds taken into account. We find that for atmospheric pressures greater than a fraction of a bar, the adiabatic cooling effect causes temperatures in the southern highland valley network regions to fall significantly below the global average. Long-term climate evolution simulations indicate that in these circumstances, water ice is transported to the highlands from low-lying regions for a wide range of orbital obliquities, regardless of the extent of the Tharsis bulge. In addition, an extended water ice cap forms on the southern pole, approximately corresponding to the location of the Noachian/Hesperian era Dorsa Argentea Formation. Even for a multiple-bar CO2 atmosphere, conditions are too cold to allow long-term surface liquid water. Limited melting occurs on warm summer days in some locations, but only for surface albedo and thermal inertia conditions that may be unrealistic for water ice. Nonetheless, meteorite impacts and volcanism could potentially cause intense episodic melting under such conditions. Because ice migration to higher altitudes is a robust mechanism for recharging highland water sources after such events, we suggest that this globally sub-zero, ‘icy highlands’ scenario for the late Noachian climate may be sufficient to explain most of the fluvial geology without the need to invoke additional long-term warming mechanisms or an early warm, wet Mars.
Keywords :
Atmospheres , Mars , Atmosphere , Mars , climate , Evolution , Mars , Polar geology , ICES
Journal title :
Icarus
Serial Year :
2013
Journal title :
Icarus
Record number :
2379490
Link To Document :
بازگشت