Title of article :
Mapping forest biomass from space – Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models
Author/Authors :
Kattenborn، نويسنده , , Teja and Maack، نويسنده , , Joachim and Faكnacht، نويسنده , , Fabian and Enكle، نويسنده , , Fabian and Ermert، نويسنده , , Jِrg and Koch، نويسنده , , Barbara، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2015
Abstract :
Spaceborne sensors allow for wide-scale assessments of forest ecosystems. Combining the products of multiple sensors is hypothesized to improve the estimation of forest biomass. We applied interferometric (Tandem-X) and photogrammetric (WorldView-2) based predictors, e.g. canopy height models, in combination with hyperspectral predictors (EO1-Hyperion) by using 4 different machine learning algorithms for biomass estimation in temperate forest stands near Karlsruhe, Germany. An iterative model selection procedure was used to identify the optimal combination of predictors. The most accurate model (Random Forest) reached a r2 of 0.73 with a RMSE of 14.9% (29.4 t/ha). Further results revealed that the predictive accuracy depended highly on the statistical model and the area size of the field samples. We conclude that a fusion of canopy height and spectral information allows for accurate estimations of forest biomass from space.
Keywords :
Hyperspectral , TanDEM-X , WorldView-2 , Machine-learning-algorithms , Biomass modelling , Canopy height models
Journal title :
International Journal of Applied Earth Observation and Geoinformation
Journal title :
International Journal of Applied Earth Observation and Geoinformation