Author/Authors :
Cigdem and Tejada-Martيnez، نويسنده , , Andrés E. and Grosch، نويسنده , , Chester E. and Gatski، نويسنده , , Thomas B.، نويسنده ,
Abstract :
Recently, Pruett et al. [Pruett, C.D., Gatski, T.B., Grosch, C.E., Thacker, W.D., 2003. The temporally filtered Navier–Stokes equations: properties of the residual stress. Phys. Fluids 15, 2127–2140] proposed an approach to large-eddy simulation (LES) based on time-domain filtering; their approach was termed temporal large-eddy simulation or TLES. In a continuation of their work, Pruett and collaborators tested their methodology by successfully performing TLES of unstratified turbulent channel flow up to Reynolds number of 590 (based on channel half-height and friction velocity) [Pruett, C.D., Thomas, B.C., Grosch, C.E., Gatski, T.B., 2006. A temporal approximate deconvolution model for LES. Phys. Fluids 18, 028104, 4p]. Here, we carefully analyze the TLES methodology in order to understand the role of its key components and in the process compare TLES to more traditional approaches of spatial LES. Furthermore, we extend the methodology to stably stratified turbulent channel flow.
Keywords :
Channel flow , Turbulent flow , Stratified flow , Temporal large-eddy simulation