Title of article :
Accurate heat transfer measurements using thermochromic liquid crystal. Part 2: Application to a rotating disc
Author/Authors :
Kakade، نويسنده , , V.U. and Lock، نويسنده , , G.D. and Wilson، نويسنده , , M. and Owen، نويسنده , , J.M. and Mayhew، نويسنده , , J.E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
950
To page :
959
Abstract :
Encapsulated thermochromic liquid crystal (TLC) can accurately measure surface temperature in a variety of heat transfer and fluid-flow experiments. In Part 1 of this two-part paper, two narrow-band liquid crystals were specifically calibrated for application to experiments on a disc rotating at high speed (∼5000 rpm). Part 2 describes how these crystals were used to measure the surface temperature on the disc in a transient experiment that models the flow of internal cooling air in a gas turbine. The TLC was viewed through the transparent polycarbonate disc using a digital video camera and strobe light synchronised to the disc frequency. The convective heat transfer coefficient, h, was subsequently calculated from the one-dimensional solution of Fourier’s conduction equation for a semi-infinite wall. The analysis accounted for the exponential rise in the air temperature driving the heat transfer, and for experimental uncertainties in the measured values of h. The paper focuses on the method used, and sample experimental results are provided to demonstrate the accuracy and potency of the technique.
Keywords :
transient heat transfer , thermochromic liquid crystal , Rotating flow
Journal title :
International Journal of Heat and Fluid Flow
Serial Year :
2009
Journal title :
International Journal of Heat and Fluid Flow
Record number :
2381774
Link To Document :
بازگشت