Title of article :
Numerical modeling of slug flow initiation in a horizontal channels using a two-fluid model
Author/Authors :
Ansari ، نويسنده , , M.R. and Shokri، نويسنده , , V.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
11
From page :
145
To page :
155
Abstract :
This paper presents a methodology for modeling slug initiation and growth in horizontal ducts. Transient two-fluid equations are solved numerically using a class of high-resolution shock capturing methods. The advantage of this method is that slug formation and growth in a stratified regime can be calculated directly from the solutions to the flow field differential equations. In addition, by using high-resolution shock capturing methods that do not contain numerical diffusion, the discontinuity generated by slugging in the flow field can be modeled with good accuracy. The two-fluid model is shown to be well-posed mathematically only under certain conditions. Under these circumstances, the two-fluid model is capable of correctly predicting and modeling the flow physics. When ill-posed, an unbounded instability occurs in the flow field solution, and the instability amplitude increases exponentially with decreasing mesh sizes. This work shows that there are three zones associated with slug formation. In addition, long wavelength slugs are shown to initiate from short wavelength waves. These short waves are generated at the interface of the two phases by the Kelvin–Helmholtz hydrodynamic instability. The results obtained through numerical modeling show good agreement with experimental results.
Keywords :
hydrodynamic instability , Two-phase stratified flow , Two-fluid model , Slug flow initiation
Journal title :
International Journal of Heat and Fluid Flow
Serial Year :
2011
Journal title :
International Journal of Heat and Fluid Flow
Record number :
2381928
Link To Document :
بازگشت