Title of article :
Large eddy simulation and Reynolds-averaged Navier-Stokes calculations of supersonic impinging jets at varying nozzle-to-wall distances and impinging angles
Author/Authors :
Chan، نويسنده , , Ryan L. and Chin، نويسنده , , C. and Soria، نويسنده , , J. and Ooi، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
11
From page :
31
To page :
41
Abstract :
This paper utilises two different computational methods to investigate the characteristics of a supersonic impinging jet at non-dimensionalised nozzle-to-wall distances ( Z n / D ) of 1.5 and 2.5 with the impinging angles from 0° to 45°. The static Smagorinsky subgrid-scale model was chosen for the LES and the two equation k – ∊ turbulence model for the RANS. Computational parameters applied in the simulations emulated the experimental setup conducted by Risborg (2008). From the results obtained, both methodologies were able to predict the location of the first shock cell fairly accurately when compared to the steady-state shadowgraph images of Risborg (2008). However, the intensities of the shocks were significantly different between the two numerical methods, with the RANS underestimating the value of the density gradients at the shocks. The pressure distribution near the impinging plate have been investigated and found to differ between the RANS and the LES for small impinging angles (0° and 10°) when Z n / D = 1.5 . In addition, the RANS data was not able to capture the recirculation zone for Z n / D = 1.5 and 0 ° . The instantaneous velocity fluctuations and temperature contours of the LES were also plotted to visualise the shear layer instability and also the chaotic nature of the supersonic jet. For Z n / D = 2.5 and 0 ° , the jet experiences high velocity fluctuations as the configuration causes the axially flapping instability. Overall, there are discrepancies between the RANS and LES but both are able to capture the key averaged flow features of the supersonic impinging jets.
Keywords :
supersonic , Impinging angle , Impinging jet , RANS , Shock structure , LES
Journal title :
International Journal of Heat and Fluid Flow
Serial Year :
2014
Journal title :
International Journal of Heat and Fluid Flow
Record number :
2382327
Link To Document :
بازگشت