Title of article :
DECISION MAKING IN MEDICAL INVESTIGATIONS USING NEW DIVERGENCE MEASURES FOR INTUITIONISTIC FUZZY SETS
Author/Authors :
A. Srivastava، A. Srivastava نويسنده Department of Mathematics, Jaypee Institute of Information Tech- nology, Noida, Uttar Pradesh , , S. Maheshwari، S. Maheshwari نويسنده Department of Mathematics, Jaypee Institute of Information Tech- nology, Noida, Uttar Pradesh ,
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2016
Abstract :
اخيراً مجموعه هاي فازي شهودي معرفي شده توسط Atanassov يكي از توانمند ترين و انعطاف پذيرترين روشها براي مواجهه با شرايط نامطمين و پيچيده در جهان واقعي است . بخصوص، مفهوم واگرايي بين مجموعه هاي فازي شهودي با اهميت است، زيرا در موضوعات متعددي چون قطعه بندي تصوير، تصميم گيري، تشخيص طبي، طرح شناسي وخيلي چيزها داراي كاربرد است. هدف اين مقاله معرفي يك اندازه واگراي جديد براي مجموعه هاي فازي شهودي Atanassov (AIFS) است. خواص اندازه گيري پيشنهادي ، بررسي شده و يافته ها در تشخيص هاي طبي برخي از مريضي ها با يك مجموعه از علايم مشترك به كار گرفته مي شوند.
Abstract :
In recent times, intuitionistic fuzzy sets introduced by Atanassov
has been one of the most powerful and
exible approaches for dealing with
complex and uncertain situations of real world. In particular, the concept of
divergence between intuitionistic fuzzy sets is important since it has applica-
tions in various areas such as image segmentation, decision making, medical
diagnosis, pattern recognition and many more. The aim of this paper is to
introduce a new divergence measure for Atanassovʹs intuitionistic fuzzy sets
(AIFS). The properties of the proposed divergence measure have been stud-
ied and the findings are applied in medical diagnosis of some diseases with a
common set of symptoms.
Journal title :
Iranian Journal of Fuzzy Systems (IJFS)
Journal title :
Iranian Journal of Fuzzy Systems (IJFS)