Title of article :
Characterization of Lie higher Derivations on $C^{*}$-algebras
Author/Authors :
Janfada، Ali Reza نويسنده University of Birjand , , Saidi، Hossein نويسنده Department of Electrical & Computer Engineering , , Madjid Mirzavaziri، Madjid Mirzavaziri نويسنده Madjid Mirzavaziri, Madjid Mirzavaziri
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2015
Abstract :
Let $\mathcal{A}$ be a $C^*$-algebra and $Z(\mathcal{A})$ the
center of $\mathcal{A}$. A sequence $\{L_{n}\}_{n=0}^{\infty}$ of
linear mappings on $\mathcal{A}$ with $L_{0}=I$, where $I$ is the
identity mapping
on $\mathcal{A}$, is called a Lie higher derivation if
$L_{n}[x,y]=\sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y \in
\mathcal{A}$ and all $n\geqslant0$. We show that
$\{L_{n}\}_{n=0}^{\infty}$ is a Lie higher derivation if and only if
there exist a higher derivation
$\{D_{n}:\mathcal{A}\rightarrow\mathcal{A}\}_{n=0}^{\infty}$ and a
sequence of linear mappings $\{\Delta_{n}:\mathcal{A}\rightarrow
Z(\mathcal{A})\}_{n=0}^{\infty}$
such that $\Delta_0=0$, $\Delta_n([x,y])=0$ and $L_n=D_n+\Delta_n$ for every
$x,y\in\mathcal{A}$ and all $n\geq0$.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society