Title of article :
Characterization of Lie higher Derivations on $C^{*}$-algebras
Author/Authors :
Janfada، Ali Reza نويسنده ‎University of Birjand , , Saidi، Hossein نويسنده Department of Electrical & Computer Engineering , , Madjid Mirzavaziri، Madjid Mirzavaziri نويسنده Madjid Mirzavaziri, Madjid Mirzavaziri
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2015
Pages :
6
From page :
901
To page :
906
Abstract :
Let $\mathcal{A}$ be a $C^*$-algebra and $Z(\mathcal{A})$ the‎ ‎center of $\mathcal{A}$‎. ‎A sequence $\{L_{n}\}_{n=0}^{\infty}$ of‎ ‎linear mappings on $\mathcal{A}$ with $L_{0}=I$‎, ‎where $I$ is the‎ ‎identity mapping‎ ‎on $\mathcal{A}$‎, ‎is called a Lie higher derivation if‎ ‎$L_{n}[x,y]=\sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y \in‎ ‎\mathcal{A}$ and all $n\geqslant0$‎. ‎We show that‎ ‎$\{L_{n}\}_{n=0}^{\infty}$ is a Lie higher derivation if and only if‎ ‎there exist a higher derivation‎ ‎$\{D_{n}:\mathcal{A}\rightarrow\mathcal{A}\}_{n=0}^{\infty}$ and a‎ ‎sequence of linear mappings $\{\Delta_{n}:\mathcal{A}\rightarrow‎ ‎Z(\mathcal{A})\}_{n=0}^{\infty}$‎ ‎such that $\Delta_0=0$‎, ‎$\Delta_n([x,y])=0$ and $L_n=D_n+\Delta_n$ for every‎ ‎$x,y\in\mathcal{A}$ and all $n\geq0$‎.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2015
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2384657
Link To Document :
بازگشت