Title of article :
Suzuki-type fixed point theorems for generalized contractive mappings‎ ‎that characterize metric completeness
Author/Authors :
Abtahi، Mortaza نويسنده ‎Damghan University ,
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2015
Pages :
13
From page :
931
To page :
943
Abstract :
‎Inspired by the work of Suzuki in‎ ‎[T.~Suzuki‎, ‎A generalized Banach contraction principle that characterizes metric completeness‎, ‎\textit{Proc‎. ‎Amer‎. ‎Math‎. ‎Soc.}‎, ‎\textbf{136} (2008)‎, ‎1861--1869]‎, ‎we prove a fixed point theorem for contractive mappings‎ ‎that generalizes a theorem of Geraghty in [M.A‎. ‎Geraghty‎, ‎On contractive mappings‎, ‎\textit{Proc‎. ‎Amer‎. ‎Math‎. ‎Soc.}‎, ‎\textbf{40} (1973)‎, ‎604--608]‎ ‎and characterizes metric completeness‎. ‎We introduce the family $\A$ of all nonnegative functions‎ ‎$\phi$ with the property that‎, ‎given a metric space $(X,d\,)$ and a mapping $T:X\to X$‎, ‎the condition‎ ‎\[‎ ‎x,y\in X,\ x\neq y,\ d(x,Tx) \leq d(x,y)\ \Longrightarrow\‎ ‎d(Tx,Ty) < \phi(d(x,y))‎, ‎\]‎ ‎implies that the iterations $x_n=T^nx$‎, ‎for any choice of initial point $x\in X$‎, ‎form a Cauchy sequence in $X$‎. ‎We show that the family of L-functions‎, ‎introduced by Lim in [T.C‎. ‎Lim‎, ‎On characterizations of Meir-Keeler contractive maps‎, ‎\textit{Nonlinear Anal.}‎, ‎\textbf{46} (2001)‎, ‎113--120]‎, ‎and the family‎ ‎of test functions‎, ‎introduced by Geraghty‎, ‎belong to $\A$‎. ‎We also prove‎ ‎a Suzuki-type fixed point theorem for nonlinear contractions‎.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2015
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2384660
Link To Document :
بازگشت