Title of article
Binomial edge ideals and rational normal scrolls
Author/Authors
Chaudhry، Faryal نويسنده Abdus Salam School of Mathematical Sciences , , Dokuyucu، Ahmet نويسنده Ovidius University ,
Issue Information
دوماهنامه با شماره پیاپی 0 سال 2015
Pages
9
From page
971
To page
979
Abstract
Let $X=\left(
\begin{array}{llll}
x_1 & \ldots & x_{n-1}& x_n\\
x_2& \ldots & x_n & x_{n+1}
\end{array}\right)$ be the Hankel matrix of size $2\times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_G\subset K[x_1,\ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaulay. We find the minimal primes of $I_G$ and show that $I_G$ is a set theoretical complete intersection. Moreover, a sharp upper bound for the regularity of $I_G$ is given.
Journal title
Bulletin of the Iranian Mathematical Society
Serial Year
2015
Journal title
Bulletin of the Iranian Mathematical Society
Record number
2384663
Link To Document