• Title of article

    Binomial edge ideals and rational normal scrolls

  • Author/Authors

    Chaudhry، Faryal نويسنده Abdus Salam School of Mathematical Sciences , , Dokuyucu، Ahmet نويسنده ‎Ovidius University‎ ,

  • Issue Information
    دوماهنامه با شماره پیاپی 0 سال 2015
  • Pages
    9
  • From page
    971
  • To page
    979
  • Abstract
    ‎Let $X=\left(‎ ‎\begin{array}{llll}‎ ‎ x_1 & \ldots & x_{n-1}& x_n\\‎ ‎ x_2& \ldots & x_n & x_{n+1}‎ ‎\end{array}\right)$ be the Hankel matrix of size $2\times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_G\subset K[x_1,\ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaulay‎. ‎We find the minimal primes of $I_G$ and show that $I_G$ is a set theoretical complete intersection‎. ‎Moreover‎, ‎a sharp upper bound for the regularity of $I_G$ is given‎.‎
  • Journal title
    Bulletin of the Iranian Mathematical Society
  • Serial Year
    2015
  • Journal title
    Bulletin of the Iranian Mathematical Society
  • Record number

    2384663