Title of article :
Higher numerical ranges of matrix polynomials
Author/Authors :
AGHAMOLLAEI، GHOLAMREZA نويسنده , , Nourollahi، Mohammad Ali نويسنده ‎Faculty of Mathematics and Computer‎, ‎Shahid Bahonar University of Kerman ,
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2015
Pages :
17
From page :
29
To page :
45
Abstract :
‎Let $P(\lambda)$ be an‎ ‎$n$-square complex matrix polynomial‎, ‎and $1 \leq k \leq n$ be a‎ ‎positive integer‎. ‎In this paper‎, ‎some algebraic and geometrical‎ ‎properties of the $k$-numerical range of $P(\lambda)$ are‎ ‎investigated‎. ‎In particular‎, ‎the relationship between the‎ ‎$k$-numerical range of $P(\lambda)$ and the $k$-numerical range of‎ ‎its companion linearization is stated‎. ‎Moreover‎, ‎the $k$-numerical‎ ‎range of the basic $A$-factor block circulant matrix‎, ‎which is the‎ ‎block companion matrix of the matrix polynomial $P(\lambda) =‎ ‎\lambda ^m I_n‎ - ‎A$‎, ‎is studied.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2015
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2388988
Link To Document :
بازگشت