Title of article :
A note on lifting projections
Author/Authors :
Hadwin، Don نويسنده College of Engineering and Physical Sciences‎, ‎University of New Hampshire ,
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2015
Pages :
6
From page :
117
To page :
122
Abstract :
‎Suppose $\pi:\mathcal{A}\rightarrow \mathcal{B}$ is a surjective unital $\ast‎ ‎$-homomorphism between C*-algebras $\mathcal{A}$ and $\mathcal{B}$‎, ‎and $0\leq‎ ‎a\leq1$ with $a\in \mathcal{A}$‎. ‎We give a sufficient condition that ensures‎ ‎there is a proection $p\in \mathcal{A}$ such that $\pi \left( p\right)‎ ‎=\pi \left( a\right) $‎. ‎An easy consequence is a result of [L‎. ‎G‎. ‎Brown and G‎. ‎k‎. ‎Pedersen‎, ‎C*-algebras of real rank‎ ‎zero‎, ‎\textit{J‎. ‎Funct‎. ‎Anal.} {99} (1991) 131--149] that such a $p$ exists when $\mathcal{A}$ has real rank zero‎.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2015
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2388995
Link To Document :
بازگشت