Title of article :
A note on lifting projections
Author/Authors :
Hadwin، Don نويسنده College of Engineering and Physical Sciences, University of New Hampshire ,
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2015
Abstract :
Suppose $\pi:\mathcal{A}\rightarrow \mathcal{B}$ is a surjective unital $\ast
$-homomorphism between C*-algebras $\mathcal{A}$ and $\mathcal{B}$, and $0\leq
a\leq1$ with $a\in \mathcal{A}$. We give a sufficient condition that ensures
there is a proection $p\in \mathcal{A}$ such that $\pi \left( p\right)
=\pi \left( a\right) $. An easy consequence is a result of [L. G. Brown and G. k. Pedersen, C*-algebras of real rank
zero, \textit{J. Funct. Anal.} {99} (1991) 131--149] that such a $p$ exists when $\mathcal{A}$ has real rank zero.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society