• Title of article

    Strongly clean triangular matrix rings with endomorphisms

  • Author/Authors

    Chen، H. نويسنده , , Kose، H‎. نويسنده Department of Mathematics‎, ‎Ahi Evran University‎ , , Kurtulmaz، Y. نويسنده Department of Mathematics‎, ‎Bilkent University‎ ,

  • Issue Information
    دوماهنامه با شماره پیاپی 0 سال 2015
  • Pages
    10
  • From page
    1365
  • To page
    1374
  • Abstract
    ‎A ring $R$ is strongly clean provided that every element‎ ‎in $R$ is the sum of an idempotent and a unit that commutate‎. ‎Let‎ ‎$T_n(R,\sigma)$ be the skew triangular matrix ring over a local‎ ‎ring $R$ where $\sigma$ is an endomorphism of $R$‎. ‎We show that‎ ‎$T_2(R,\sigma)$ is strongly clean if and only if for any $a\in‎ ‎1+J(R)‎, ‎b\in J(R)$‎, ‎$l_a-r_{\sigma(b)}‎: ‎R\to R$ is surjective‎. ‎Further‎, ‎$T_3(R,\sigma)$ is strongly clean if‎ ‎$l_{a}-r_{\sigma(b)}‎, ‎l_{a}-r_{\sigma^2(b)}$ and‎ ‎$l_{b}-r_{\sigma(a)}$ are surjective for any $a\in U(R),b\in‎ ‎J(R)$‎. ‎The necessary condition for $T_3(R,\sigma)$ to be strongly‎ ‎clean is also obtained‎.
  • Journal title
    Bulletin of the Iranian Mathematical Society
  • Serial Year
    2015
  • Journal title
    Bulletin of the Iranian Mathematical Society
  • Record number

    2389085