Title of article :
Non-Newtonian thermal convection of eyring-powell fluid from an isothermal sphere with biot number effects‎
Author/Authors :
Abdul ‎Gaffar‎، S. نويسنده Department of Mathematics, Jawaharlal Nehru Techological University Anantapur, Anantapuramu-51500‎2, India‎ , , Ramachandra Prasad، V. نويسنده Department of Mathematics, Madanapalle Institute of Technology and Sciences, Madanapalle-51732‎5, India‎ , , Keshava Reddy، E. نويسنده Department of Mathematics, Jawaharlal Nehru Techological University Anantapur, Anantapuramu-515002, India ,
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2016
Pages :
16
From page :
131
To page :
146
Abstract :
در اين مقاله يك روش كارا براي حل معادلات انتگرال تصادفي ولتراي نوع دوم به كمك بسط تيلور معرفي مي شود. اين روش معادله انتگرال تصادفي ولتراي نوع دوم را به يك معادله ديفرانسيل خطي تصادفي معمولي با نياز به شرايط مرزي مشخص تبديل مي كند. براي تعيين اين شرايط مرزي از تكنيك انتگرال گيري استفاده مي شود. اين تكنيك يك تقريب ساده و بسته از جواب معادله انتگرال تصادفي ولتراي نوع دوم ارايه مي دھد. اميد رياضي فرايند تقريب محاسبه مي شود و چندين مثال عددي براي نشان دادن كارايي اين روش ارايه شده است
Abstract :
This article investigates the nonlinear, steady boundary layer flow and heat transfer of an incompressible Eyring-Powell non-Newtonian fluid from an isothermal sphere with Biot number effects. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The influence of a number of emerging dimensionless parameters, namely the Eyring-Powell rheological fluid parameter $\left( \varepsilon \right) $, the local non-Newtonian parameter based on length scale $\left( \delta \right) $, Prandtl number (Pr), Biot number $\left( \gamma\right) $ and dimensionless tangential coordinate $\left(\xi \right) $ on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. It is found that the velocity and heat transfer rate (Nusselt number) decrease with increasing $\left( \varepsilon \right) $, whereas temperature and skin friction increase. An increasing $\left(\delta\right) $ is observed to enhance velocity, local skin friction and heat transfer rate but reduces the temperature. An increase $\left( \gamma \right) $ is seen to increase velocity, temperature, local skin friction and Nusselt number. The study is relevant to chemical materials processing ‎applications.‎
Journal title :
International Journal of Industrial Mathematics(IJIM)
Serial Year :
2016
Journal title :
International Journal of Industrial Mathematics(IJIM)
Record number :
2390156
Link To Document :
بازگشت