Title of article :
Co-centralizing generalized derivations acting on multilinear polynomials in prime rings
Author/Authors :
-، - نويسنده Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B., India. Dhara, B. , -، - نويسنده Department of Mathematics, Jadavpur University, Kolkata-700032, W.B., India. Kar, S. , -، - نويسنده {Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B., India. Pradhan, K. G.
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2016
Abstract :
Let $R$ be a noncommutative prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C$ $(=Z(U))$ the extended centroid of $R$. Let $0neq ain R$ and $f(x_1,ldots,x_n)$ a multilinear polynomial over $C$ which is noncentral valued on $R$. Suppose that $G$ and $H$ are two nonzero generalized derivations of $R$ such that $a(H(f(x))f(x)-f(x)G(f(x)))in C$ for all $x=(x_1,ldots,x_n)in R^n$. one of the following holds: $f(x_1,ldots,x_n)^2$ is central valued on $R$ and there exist $b,p,qin U$ such that $H(x)=px+xb$ for all $xin R$, $G(x)=bx+xq$ for all $xin R$ with $a(p-q)in C$; there exist $p,qin U$ such that $H(x)=px+xq$ for all $xin R$, $G(x)=qx$ for all $xin R$ with $ap=0$; $f(x_1,ldots,x_n)^2$ is central valued on $R$ and there exist $qin U$, $lambdain C$ and an outer derivation $g$ of $U$ such that $H(x)=xq+lambda x-g(x)$ for all $xin R$, $G(x)=qx+g(x)$ for all $xin R$, with $ain C$; $R$ satisfies $s_4$ and there exist $b,pin U$ such that $H(x)=px+xb$ for all $xin R$, $G(x)=bx+xp$ for all $xin R$.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society