Title of article :
On natural homomorphisms of local cohomology modules
Author/Authors :
-، - نويسنده Quaid-i-Azam University, Islamabad-Pakistan. Mahmood, W.
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2016
Pages :
19
From page :
1343
To page :
1361
Abstract :
-
Abstract :
‎Let $M$ be a non-zero finitely generated module over a commutative Noetherian local ring $(R,mathfrak{m})$ with $dim_R(M)=t$‎. ‎Let $I$ be an ideal of $R$ with $grade(I,M)=c$‎. ‎In this article we will investigate several natural homomorphisms of local cohomology modules‎. ‎The main purpose of this article is to investigate when the natural homomorphisms $gamma‎: ‎Tor^{R}_c(k,H^c_I(M))to kotimes_R M$ and $eta‎: ‎Ext^{d}_R(k,H^c_I(M))to Ext^{t}_R(k‎, ‎M)$ are non-zero where $d:=t-c$‎. ‎In fact for a Cohen-Macaulay module $M$ we will show that the homomorphism $eta$ is injective (resp‎. ‎surjective) if and only if the homomorphism $H^{d}_{mathfrak{m}}(H^c_{I}(M))to H^t_{mathfrak{m}}(M)$ is injective (resp‎. ‎surjective) under the additional assumption of vanishing of Ext modules‎. ‎The similar results are obtained for the homomorphism $gamma$‎. ‎Moreover we will construct the natural homomorphism $Tor^{R}_c(k‎, ‎H^c_I(M))to Tor^{R}_c(k‎, ‎H^c_J(M))$ for the ideals $Jsubseteq I$ with $c = grade(I,M)= grade(J,M)$‎. ‎There are several sufficient conditions on $I$ and $J$ to provide this homomorphism is an isomorphism.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2396514
Link To Document :
بازگشت