Title of article :
A remark on Remainders of homogeneous spaces in some compactifications
Author/Authors :
-، - نويسنده Department of Mathematics‎, ‎Shandong Agricultural University‎, ‎Taian 271018‎, ‎China. ‎Wang, H. , -، - نويسنده School of Mathematics‎, ‎Nanjing Normal University‎, ‎Nanjing 210046‎, ‎China. He, W.
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2016
Pages :
12
From page :
1523
To page :
1534
Abstract :
-
Abstract :
‎We prove that a remainder $Y$ of a non-locally compact‎ ‎rectifiable space $X$ is locally a $p$-space if and only if‎ ‎either $X$ is a Lindel"{o}f $p$-space or $X$ is $sigma$-compact‎, ‎which improves two results by Arhangelʹskii‎. ‎We also show that if a non-locally compact‎ ‎rectifiable space $X$ that is locally paracompact has a remainder $Y$ which has locally a $G_{delta}$-diagonal‎, ‎then both $X$ and $Y$ are separable and metrizable‎, ‎which improves another‎ ‎Arhangelʹskiiʹs result‎. ‎It is proved that if a non-locally compact paratopological group $G$ has a locally developable remainder $Y$‎, ‎then either $G$ and $Y$ are separable and metrizable‎, ‎or $G$ is a $sigma$-compact space with a countable network‎, ‎which improves a result by Wang-He.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2396525
Link To Document :
بازگشت