Title of article :
Finite BCI-groups are solvable
Author/Authors :
Arezoomand، Majid نويسنده Department of Mathematical Sciences,Isfahan University of Technology,Isfahan,Iran , , Taeri، Bijan نويسنده Department of Mathematical Sciences,Isfahan University of Technology,Isfahan,Iran ,
Issue Information :
فصلنامه با شماره پیاپی سال 2016
Pages :
6
From page :
1
To page :
6
Abstract :
Let S be a subset of a finite group G‎. ‎The bi-Cayley graph BCay(G,S) of G with respect to S is an undirected graph with vertex set G×{1,2} and edge set {{(x,1),(sx,2)}∣x∈G‎,‎ s∈S}‎. ‎A bi-Cayley graph BCay(G,S) is called a BCI-graph if for any bi-Cayley graph BCay(G,T)‎, ‎whenever BCay(G,S)≅BCay(G,T) we have T=gSα for some g∈G and α∈Aut(G)‎. ‎A group G is called a BCI-group if every bi-Cayley graph of GG is a BCI-graph‎. ‎In this paper‎, ‎we prove that every BCI-group is solvable‎.
Keywords :
Bi-Cayley graph , Graph isomorphism , solvable group.
Journal title :
International Journal of Group Theory
Serial Year :
2016
Journal title :
International Journal of Group Theory
Record number :
2396651
Link To Document :
بازگشت