Title of article :
Degree distance and Gutman index of increasing trees
Author/Authors :
Kazemi، Ramin نويسنده Department of statistics,Imam Khomeini International University,Qazvin,Iran , , Khaleghi Meimondari، Leila نويسنده Department of Statistics,Imam Khomeini International University,Qazvin,Iran ,
Issue Information :
فصلنامه با شماره پیاپی سال 2016
Pages :
9
From page :
23
To page :
31
Abstract :
The Gutman index and degree distance of a connected graph GG are defined as‎ ‎‎‎Gut(G)=∑{u,v}⊆V(G)d(u)d(v)dG(u,v)‎,‎ ‎ ‎and‎ ‎ ‎‎DD(G)=∑{u,v}⊆V(G)(d(u)+d(v))dG(u,v)‎,‎ ‎ ‎respectively‎, ‎where‎ ‎d(u) is the degree of vertex uu and dG(u,v) is the distance between vertices u and v‎. ‎In this paper‎, ‎through a recurrence equation for the Wiener index‎, ‎we study the first two‎ ‎moments of the Gutman index and degree distance of increasing‎ ‎trees‎. ‎
Journal title :
Transactions on Combinatorics
Serial Year :
2016
Journal title :
Transactions on Combinatorics
Record number :
2397995
Link To Document :
بازگشت