Title of article :
Steiner Wiener index of graph products
Author/Authors :
Mao، Yaoping نويسنده Department of Mathematics,Qinghai Normal University,Qinghai,China , , Wang، Zhao نويسنده School of Mathematical Sciences,Beijing Normal University,Beijing,China , , Gutman، Ivan نويسنده State University of Novi Pazar,Novi Pazar,Serbia ,
Issue Information :
فصلنامه با شماره پیاپی سال 2016
Abstract :
The Wiener index W(G) of a connected graph G is defined as W(G)=∑u,v∈V(G)dG(u,v) where dG(u,v) is the distance between the vertices uu and vv of G. For S⊆V(G) , the Steiner distance d(S) of the vertices of S is the minimum size of a connected subgraph of G whose vertex set is S. The k-th Steiner Wiener index SWk(G) of G is defined as SWk(G)=∑|S|=kS⊆V(G)d(S) . We establish expressions for the k-th Steiner Wiener index on the join, corona, cluster, lexicographical product, and Cartesian product of graphs.
Journal title :
Transactions on Combinatorics
Journal title :
Transactions on Combinatorics