Title of article :
Symmetric module and connes amenability
Author/Authors :
-، - نويسنده Department of Mathematics, Faculty of Science, Azarbaijan Shahid Madani University, P.O.Box 53751-71379, Tabriz, Iran. Sattari, Mohammad Hossein , -، - نويسنده Department of Mathematics, Faculty of Science, Azarbaijan Shahid Madani University, P.O.Box 53751-71379, Tabriz, Iran. Shafieasl, Hamid
Issue Information :
دوفصلنامه با شماره پیاپی 5 سال 2017
Pages :
11
From page :
49
To page :
59
Abstract :
-
Abstract :
In this paper we introduce two symmetric variants of amenability, symmetric module amenability and symmetric Connes amenability. We determine symmetric module amenability and symmetric Connes amenability of some concrete Banach algebras. Indeed, it is shown that $ell^1(S)$ is  a symmetric $ell^1(E)$-module amenable if and only if $S$ is amenable, where $S$ is an inverse semigroup with subsemigroup $E(S)$ of idempotents. In symmetric connes amenability, we have proved that $M(G)$ is symmetric connes amenable if and only if $G$ is amenable.
Journal title :
Sahand Communications in Mathematical Analysis
Journal title :
Sahand Communications in Mathematical Analysis
Record number :
2399039
Link To Document :
بازگشت