Title of article :
Connes amenability of dual Banach algebras
Author/Authors :
Ghaffari, A. نويسنده Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran. , Javadi, S. نويسنده Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran.
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2017
Abstract :
Generalizing the notion of character amenability for Banach algebras, we study the concept of $varphi$-Connes amenability of a dual Banach algebra $mathcal{A}$ with predual $mathcal{A}_*$, where $varphi$ is a homomorphism from $mathcal{A}$ onto $Bbb C$ that lies in $mathcal{A}_*$. Several characterizations of $varphi$-Connes amenability are given. We also prove that the following are equivalent for a unital weakly cancellative semigroup algebra $l^1(S)$: (i) $S$ is $chi$-amenable. (ii) $l^1(S)$ is $hat{chi}$-Connes amenable. (iii) $l^1(S)$ has a $hat{chi}$-normal, virtual diagonal.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society