Title of article :
Embedding normed linear spaces into $C(X)$
Author/Authors :
-، - نويسنده Department of Mathematics‎, ‎University of Isfahan‎, ‎Isfahan 81745--163‎, ‎Iran‎, ‎and‎, ‎School of Mathematics‎, ‎Institute for Research in Fundamental Sciences (IPM)‎, ‎P.O‎. ‎Box: Fakhar, M. , -، - نويسنده Department of Mathematical Sciences‎, ‎Isfahan University of Technology‎, ‎Isfahan 84156--83111‎, ‎Iran‎, ‎and‎, ‎School of Mathematics‎, ‎Institute for Research in Fundamental Sciences (IPM)‎, Koushesh, M. R. , -، - نويسنده Department of Mathematical Sciences‎, ‎Isfahan University of Technology‎, ‎Isfahan 84156--83111‎, ‎Iran. Raoofi, M.
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2017
Pages :
5
From page :
131
To page :
135
Abstract :
-
Abstract :
‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can indeed be chosen to be the Stone--Cech compactification of $L^*setminus{0}$‎, ‎where $L^*setminus{0}$ is endowed with the supremum norm topology.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2400328
Link To Document :
بازگشت