Title of article :
Positive solutions for asymptotically periodic Kirchhoff-type equations with critical growth
Author/Authors :
-، - نويسنده School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan, P. R. China. Shi, H. , -، - نويسنده School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan, P. R. China. Chen, H.
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2017
Abstract :
In this paper, we consider the following Kirchhoff-type equations: $-left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{R}^{3},$ $u(x)>0, quad mbox{in }mathbb{R}^{3},$ $uin H^{1}(mathbb{R}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. The aim of this paper is to study the existence of positive solutions for Kirchhoff-type equations with a nonlinearity in the critical growth under some suitable assumptions on $V(x)$ and $f(x,u)$. Recent results from the literature are improved and extended.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society