Title of article
ALMOST MULTIPLICATIVE LINEAR FUNCTIONALS AND APPROXIMATE SPECTRUM
Author/Authors
ANJIDANI, E Department of Mathematics - University of Neyshabur, Neyshabur, Iran
Pages
11
From page
177
To page
187
Abstract
We define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ-approximate spectrum σ_δ (a) of a is compact. The relation between the δ-approximate spectrum and the usual spectrum is investigated. Also an analogue of the classical Gleason-Kahane-Zelazko theorem is established: For each ε>0, there is δ>0 such that if ϕ is a linear functional with ϕ(a)∈σ_δ (a) for all a∈A, then ϕ is ε-almost multiplicative. Finally, we use these ideas to provide a sufficient condition for a δ-almost multiplicative functional to be multiplicative.
Keywords
almost multiplicative linear functional , Ransford spectrum , pseudospectrum , condition spectrum , Gleason-Kahane-Zelazko theorem
Journal title
Astroparticle Physics
Serial Year
2015
Record number
2407205
Link To Document