Other language title :
استفاده از روش مونت كارلو در رابطه با ارزيابي DMU هاي كاراي راسي
Title of article :
Utilizing Monte Carlo Method for Ranking Extreme Efficient Units in Data Envelopment Analysis
Author/Authors :
Jahanshahloo, Gh-R. Department of Mathematics - Kharazmi University - Tehran , Zahedi-Seresht, M. Department of Mathematics - Kharazmi University - Tehran
Pages :
18
From page :
23
To page :
40
Abstract :
Data envelopment analysis (DEA) is a mathematical programming method for calculating efficiency of decision making units (DMU). In calculating the efficiency score of units through DEA we may come up with some efficient units. But the question is among these efficient units which of them is better. As we know, it is possible to rank inefficient units through efficiency score; however, for ranking efficient units it is not helpful and other methods should be developed in these regards. To obviate this problem there have been so many attempts in the literature which have their pros and cons. Cross-efficiency method was first introduced by Sexon et al. for ranking efficient units. The major problem of this method is alternative optimal solutions in each model which must be solved for each DMU. Another problem of this method is dependency of obtained solutions on the solution obtained by other units. Another method which has widely been used is super efficiency, presented by Anderson and Petersen. There are several flaws in their suggested method. Infeasibility, instability, dependency of the model on the input and output orientation and non-zero slack variables are the weaknesses of this method which may occur in specific problems. This article is an attempt to present a method which does not have the aforementioned problems and can be utilized to calculate the rank of extreme efficient units through using the Hit or Miss Monte Carlo method. At the end of the article some examples are made in order to show the efficiency of the presented method.
Farsi abstract :
تحليل پوششي داده ها يك روش برنامه ريزي رياضي براي محاسبه كارايي واحدهاي تصميم گيري مي باشد. زماني كه تحليل پوششي داده ها نمره كارايي واحدها را بدست مي آورد ممكن است تعدادي از آنها كارا شوند. حال اين سوال پيش مي آيد از بين اين واحدهاي كارا كدام بهترين مي باشد. واحدهاي ناكارا را ميتوان توسط نمره كاراييشان رتبه بندي كرد ولي براي واحدهاي كارا بايد روشي را ارايه كرد كه آنها را رتبه بندي كند. روش هايي زيادي براي رتبه بندي واحدهاي كارا ارايه گرديده است كه هر كدام از آنها داراي معايب و مزايايي مي باشند. را براي رتبه بندي واحدها كارا اراييه كرد كه يكي از مشكلات بزرگ اين روش جواب بهينه Cross efficiency روش Sexton حل شوند. ايراد ديگر اين روش، وابستگي جواب مدل به DMU چندگانه در هركدام از مدهايي مي باشد كه بايد براي هر مي باشد كه Super-efficiency ، جواب هاي بدست آمده توسط واحدهاي ديگر مي باشد. يكي از روش هاي پر كاربرد ديگر ارايه گرديد. اين روش هم داراي معايب زيادي مي باشد. نشدني بودن، ناپايداري، Anderson and Petersen توسط مشكلات اين روش مي باشند كه در مسايل خاص ممكن s وابستگي مدل به ماهيت ورودي يا خروجي و متغيرهاي كمكي است اتفاق بافتد. در اين مقاله ما روشي را ارايه كرده ايم كه هيچكدام از اين مشكلات را ندارد و ميتواند رتبه واحدهاي كاراي بدست آورد. در انتهاي اين The Hit or Miss Monte Carlo Method راسي را با محاسباتي ساده و با استفاده از روش مقاله براي نشان دادن كارايي روش خودمان مثالي كاربردي را ذكر كرده ايم.
Keywords :
Data Envelopment Analysis , Efficiency , Ranking , Monte Carlo Simulation , Cross- Efficiency , Supper-Efficiency
Journal title :
Astroparticle Physics
Record number :
2407523
Link To Document :
بازگشت