Title of article :
Some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
Author/Authors :
Ashraf M. نويسنده Department of Mathematics,‎ ‎Aligarh Muslim University‎, ‎Aligarh‎, ‎202002, India. , Parveen N. نويسنده Department of Mathematics,‎ ‎Aligarh Muslim University‎, ‎Aligarh‎, ‎202002, ‎India.
Pages :
10
From page :
1197
To page :
1206
Abstract :
-
Abstract :
‎Let $R$ be a $*$-prime ring with center‎ ‎$Z(R)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $R$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $ʹ*ʹ$‎. ‎Suppose that $U$ is an ideal of $R$ such that $U^*=U$‎, ‎and $C_{sigma,tau}={cin‎ ‎R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper‎, ‎it is shown that if characteristic of $R$ is different from two and‎ ‎$[d(U),d(U)]_{sigma,tau}={0},$ then $R$ is commutative‎. ‎Commutativity of $R$ has also been established in case if‎ ‎$[d(R),d(R)]_{sigma,tau}subseteq C_{sigma,tau}.$
Journal title :
Astroparticle Physics
Record number :
2412502
Link To Document :
بازگشت