• Title of article

    Floating Matrix Tablets of Domperidone Formulation and Optimization Using Simplex Lattice Design

  • Author/Authors

    Prajapati, Shailesh Department of Pharmaceutics - Shri Sarvajanik Pharmacy College - Mehsana - Gujarat, India , Patel, Laxmanbhai Department of Pharmaceutics - C. U. Shah College Institute of Pharmacy and Research Wadhwan - Gujarat, India , Patel, Chhaganbhai Department of Pharmaceutics - C. U. Shah College Institute of Pharmacy and Research Wadhwan - Gujarat, India

  • Pages
    9
  • From page
    447
  • To page
    455
  • Abstract
    The purpose of this research was to prepare a floating matrix tablet containing domperidone as a model drug. Polyethylene oxide (PEO) and hydroxypropyl methylcellulose (HPMC) were evaluated for matrix-forming properties. A simplex lattice design was applied to systemically optimize the drug release profile. The amounts of PEO WSR 303, HPMC K15M and sodium bicarbonate were selected as independent variables and floating lag time, time required to release 50% of drug (t50) and 80% of drug (t80), diffusion coefficient (n) and release rate (k) as dependent variables. The amount of PEO and HPMC both had significant influence on the dependent variables. It was found that the content of PEO had dominating role as drug release controlling factor, but using suitable concentration of sodium bicarbonate, one can tailor the desired drug release from hydrophilic matrixes. The linear regression analysis and model fitting showed that all these formulations followed Korsmeyer and Peppas model, which had a higher value of correlation coefficient (r). The tablets of promising formulation were found to be stable for 3 months under accelerated (40°C / 75% RH) stability testing.
  • Keywords
    Domperidone , Floating matrix tablets , Simplex lattice design , Release kinetics , Polyethylene oxide , Hydroxypropyl methylcellulose , Floating lag time , Total floating time
  • Journal title
    Astroparticle Physics
  • Serial Year
    2011
  • Record number

    2414669