Title of article :
Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists
Author/Authors :
Dastmalchi, Siavoush Department of Medicinal Chemistry - School of Pharmacy - Tabriz University of Medical Sciences - Biotechnology Research Center - Tabriz University of Medical Sciences , Hamzeh-Mivehroud, Maryam Department of Medicinal Chemistry - School of Pharmacy - Tabriz University of Medical Sciences - Biotechnology Research Center - Tabriz University of Medical Sciences , Asadpour-Zeynali, Karim Department of Analytical Chemistry - Faculty of Chemistry - University of Tabriz
Pages :
12
From page :
97
To page :
108
Abstract :
Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression (MLR), artificial neural network (ANN), and HASL as a 3D QSAR method, in predicting the receptor binding affinities of arylbenzofuran histamine H3 receptor antagonists. Genetic algorithm coupled partial least square as well as stepwise multiple regression methods were used to select a number of calculated molecular descriptors to be used in MLR and ANN-based QSAR studies. Using the leave-group-out cross-validation technique, the performances of the MLR and ANN methods were evaluated. The calculated values for the mean absolute percentage error (MAPE), ranging from 2.9 to 3.6, and standard deviation of error of prediction (SDEP), ranging from 0.31 to 0.36, for both MLR and ANN methods were statistically comparable, indicating that both methods perform equally well in predicting the binding affinities of the studied compounds toward the H3 receptors. On the other hand, the results from 3D-QSAR studies using HASL method were not as good as those obtained by 2D methods. It can be concluded that simple traditional approaches such as MLR method can be as reliable as those of more advanced and sophisticated methods like ANN and 3D-QSAR analyses.
Keywords :
Histamine H3 receptor , QSAR , HASL , Multiple linear regression , Neural network
Journal title :
Astroparticle Physics
Serial Year :
2012
Record number :
2414705
Link To Document :
بازگشت